

Mineral Oil in FCM plastics MOSH and MOAH Brussels April 20, 2018

Juan-Carlos Carrillo (Shell, CONCAWE STF-33)

MOSH MOAH QUIZ

► How much MOSH is in FCM 95?

- ► 5 10% ?
- 0.5 1.0% ?
 100%)?

• MOAH found in articles is of concern:

-

Always

- Depending of the structures
- Depending on the levels

Br

- What exactly is MOAH and MOSH?
- What are the procedures in refining to make sure MOSH and MOAH do not end up in plastic products?
- Natural versus artificial incidence of MOSH in articles?
- Are MOHs a REAL issue for plastic converters (besides those on the Positive list of 10/2011)?

Chromatography context:

Mineral Oil Saturated Hydrocarbons - MOSH:

The "unresolved complex mixture" of aliphatic hydrocarbons between C20 and C35, containing multibranched saturated and alkylated multiple ring naphtenic alkanes; the carbon numbers are defined by the elution range respectively the retention time of the corresponding n-alkanes in a gas chromatographic analysis on a dimethylpolysiloxane coated column.

- MOSH is an analytical fraction, not a substance on the market
- MOSH is used as a chromatographic measure of the alkane content of an oil
- These adverse health effects attributed to the MOSH fraction, come from animal studies on hydrocarbons that are extrapolated to humans
- In animal studies in different rat strains and dogs, only the F344 rat shows adverse effects to some type of oils and waxes.

Chromatography context:

Mineral Oil Aromatic Hydrocarbons - MOAH:

(Highly alkylated) aromatic hydrocarbons with carbon numbers between C20 and C35, of one or more aromatic rings; the carbon numbers are defined by the elution range respectively the retention time of the corresponding n-alkanes in a gas chromatographic analysis on a dimethylpolysiloxane coated column.

- MOAH is a fraction, not a substance on the market.
- MOAH is used as a chromatographic measure of the aromatic content of an oil
- It is considered as an indicator of the presence of unrefined petroleum based products
- The concern is based on the possibility that MOAH fraction containing 3-7 membered rings may be potentially carcinogenic

- MOSH and MOAH are vague terms, their interpretation is highly contextual
- MOSH and MOAH analytical fractions do not correspond to petroleum products that are placed on the market
- These fractions may contain constituents coming from products of different degrees of refining and purity
- Furthermore, these fractions can also be found in products of other origin than mineral oil, for example, n-alkanes of natural origin found in fruits and vegetables
- MOSH and MOAH is contextual: impossibility of tracing their origin and the health risk they pose
 - MOAH can be harmless or of concern deepening on the origin.
- There are petroleum derived products that are lawfully used (e.g. cosmetic and food contact).
 - refined products are safe
 - presence of MOSH and MOAH is expected, unavoidable
 - no reason for suspecting non-compliance or health risk

The MOSH and MOAH "meaning" is subject of *when, what* and *how* you use it.

Mineral Oil / Wax Refinement

-

Manufacture of Mineral Oil and Wax

Impact on Substance Composition

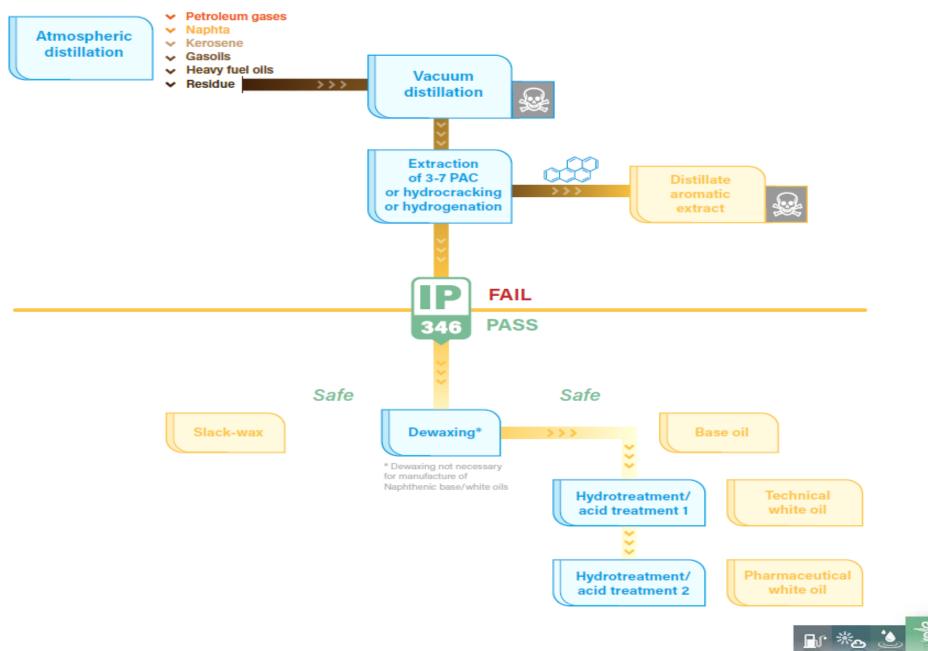
- Generic term used to group several petroleum derived liquids with "oil-like" viscosity
- Manufactured by vacuum distillation of the residue from atmospheric distillation.
- ~ 40 substances (identifiers or CAS number) which could be regarded as "mineral oil" with boiling points from 300°C to 700°C.
- Differ in physical chemical properties (e.g. viscosity) and chemical composition (e.g. aromatic content).
- Because of thousands of isomers, MO can't be described with a single chemical formula.
- Mineral oils are described as complex substances of Unknown or Variable composition, Complex reaction products or Biological materials, or shortly UVCB.
- Mineral oil is matrix, a single entity, with its own intrinsic properties behaving as a (complex) substance.
 - hydrocarbon constituents follow a physical chemical pattern
 - varying according to crude oil
 - controlled manufacture,
- ▶ In the EU, by law "mineral oils" are UVCBs and not mixtures.
- A mixture are intentionally blended to achieve a certain composition.
- Mineral oil is a substance

Reproduction permitted with due acknowledgement

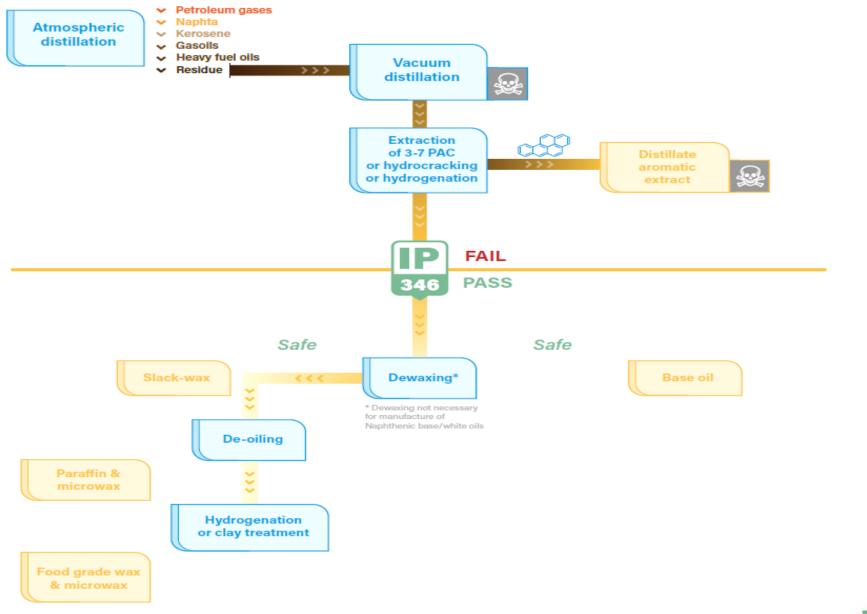
Juan-Carlos Carrillo

MOSH MOAH in FCM

- Hydrocarbon solvents have a different manufacturing process which distinguishes them from mineral oil, with their chain lengths up to C20.
- Because of this the MOSH-MOAH terminology does not apply to hydrocarbon solvents.

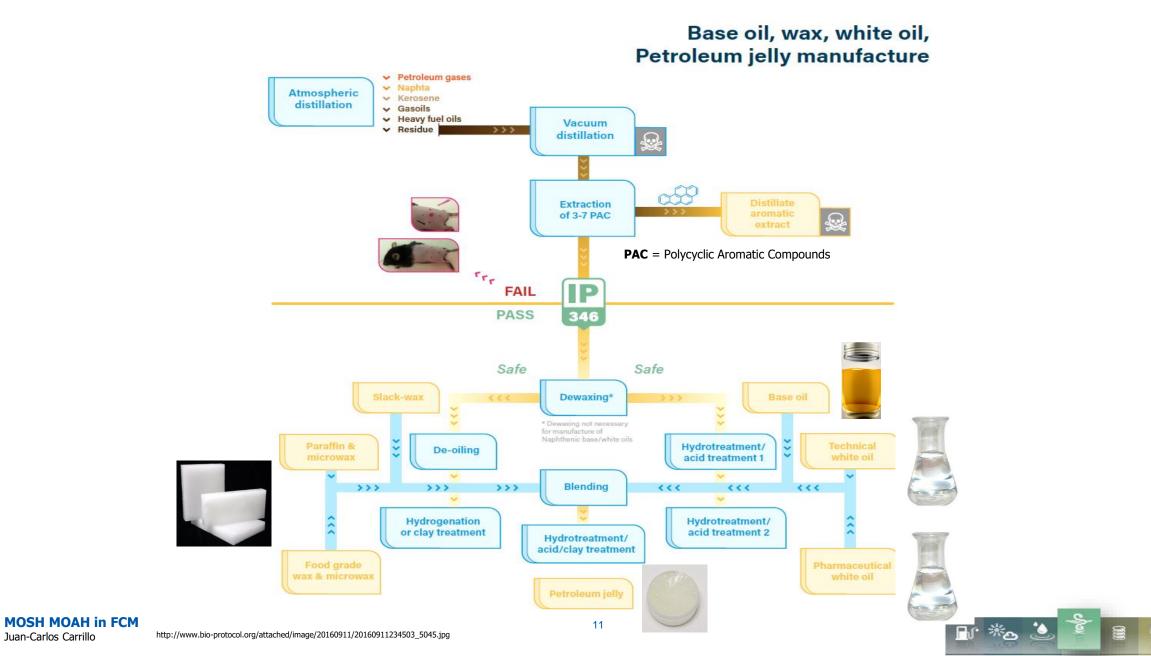


Pharmaceutical White Oil Manufacture


8

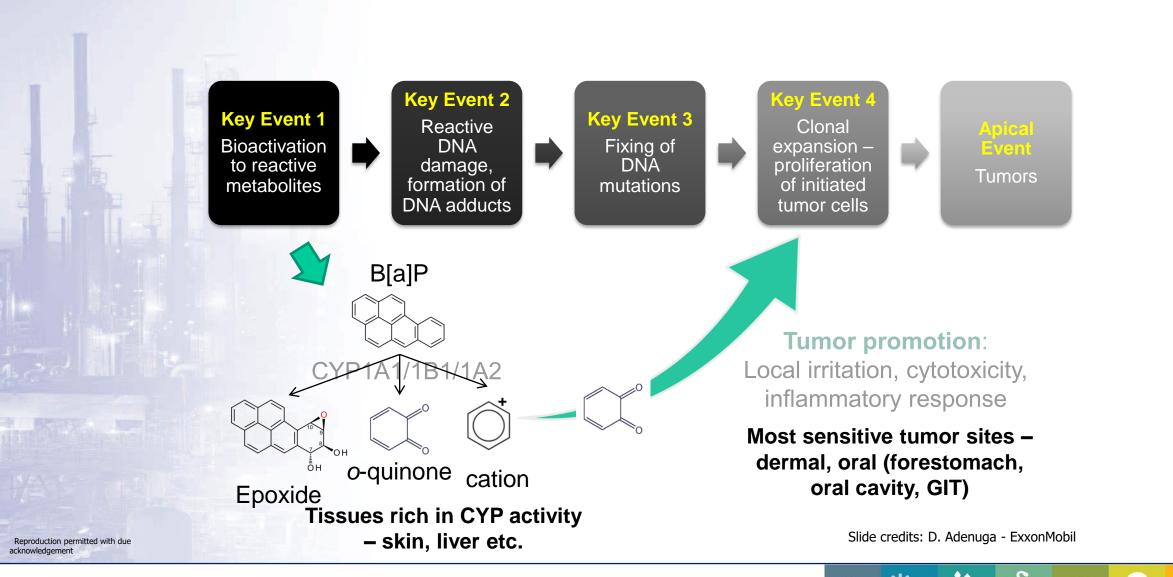
-

Paraffin and MicroWax Manufacture



Juan-Carlos Carrillo

The Mouse Skin Painting Bioassay In Mineral Oil Manufacture


Based on Derived *Minimal* Effect levels (DMEL), the risk by dermal route is the worst case scenario for PAC mediated carcinogenicity: risk of **one in a million** in developing cancer at a certain dose level. Dermal Oral 0.2 0.4 0.6 Linearized DMELs (10⁻⁶) mg BaP/kg bw/d Slide credits: D. Adenuga - ExxonMobil DMELs calculated from BMD10 values for BaP carcinogenicity tests in rodents. Reproduction permitted with due

MOSH MOAH in FCM Juan-Carlos Carrillo

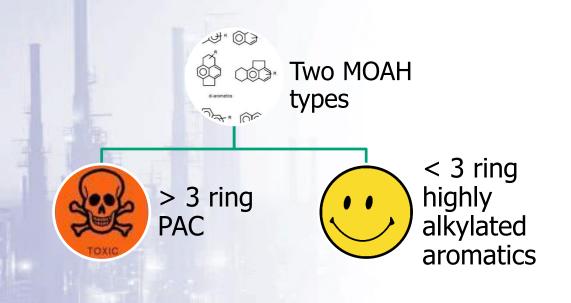
acknowledgement

See Table 61 of Baua Annex XV Restriction Report Proposal for a Restriction



13

5


MOAH Molecular Structure Determines Carcinogenicity Steric Hindrance

6

What Type Of MOAH Are Carcinogenic?

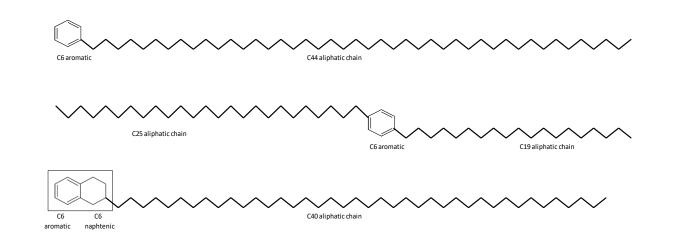
Substance or fraction	Live animals after 40 weeks	Re-treatment of live animals with a tumour promotor
Carcinogenic oil	Tumours in all animals	-
Fraction I (PAC "free")	No tumours	No tumours
Fraction II (2 and 3 rings)	No tumours	No tumours
Fraction III (> 3 rings)	No tumours	Tumours in all animals
Fraction I+II+III	Tumours in all animals	-

1. Agarwal et al., 1988

2. Doak et al.,1985

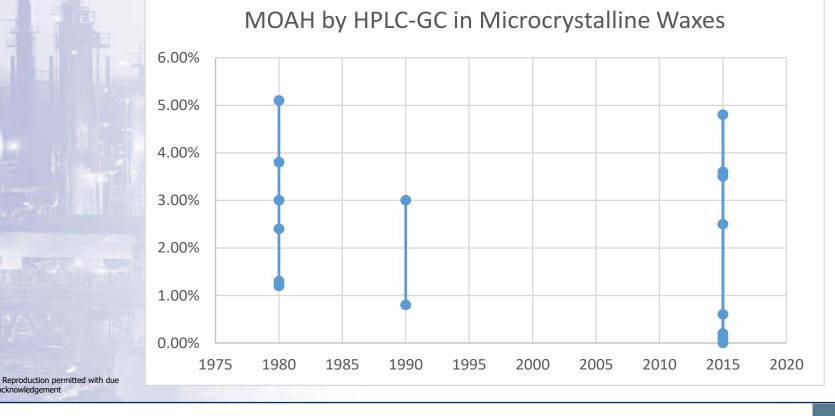
To assess MOAH it is imperative to test SUBSTANCE (the actual oil), and NOT the isolated fractions.

Interpretation of MOAH Measurements



Why Is MOAH "High"? – The MOAH Paradox Example Microcrystalline Wax

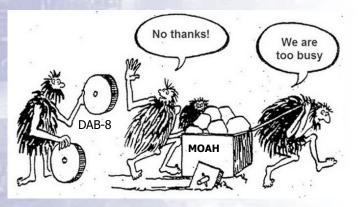
- MOAH (HPLC-GC FID) typical levels:
 - ▶ 1-5 %.
- MOAH content < C35
 - virtually absent
 - **Content of aromatic protons (NMR):**
 - ▶ ~ 0,1 0,5 %
- Typical av. mol weight microwax:
 - 700 (C50H102)
- 3-7 rings aromatics:
 - trace levels (specific UV test / Grimmer etc.)

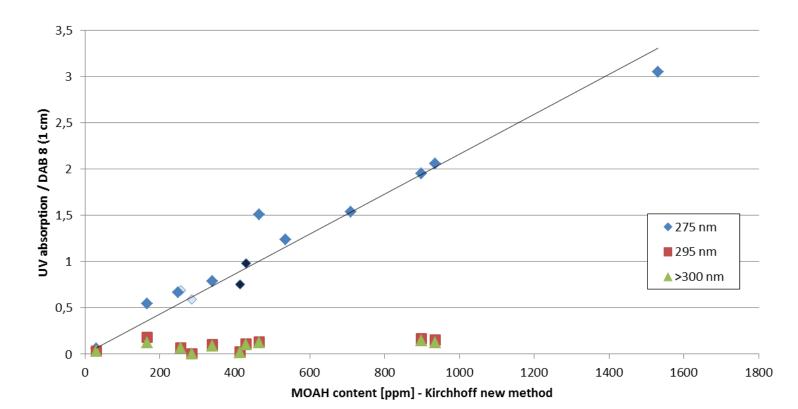


- High alkylation of a small number of aromatic carbons leads to high MOAH values (everything is interpreted as aromatic)
- The higher the MW the greater the MOAH

MOAH paradox: the more aliphatic, the more "aromatic"

- Recent HPLC-GC measurements on old and new production samples of several (EU) manufacturers (2015) confirm that MOAH was always present – nothing new!
- Historic concentrations used for fundamental toxicological studies were at least as high or even higher than those in products presently on the market

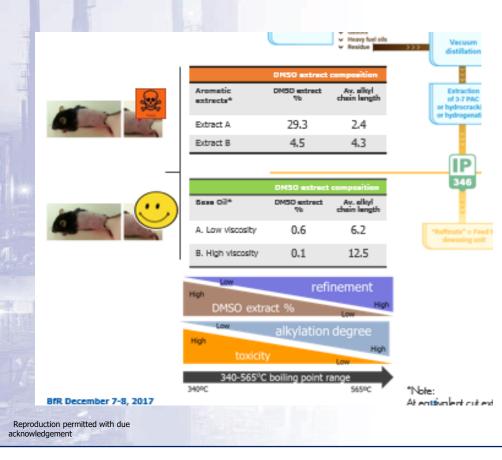

- <1980 Concawe 84-60 Samples
- 1990 BIBRA Study Samples
- 2015 Recent production samples of several EU Manufacturers

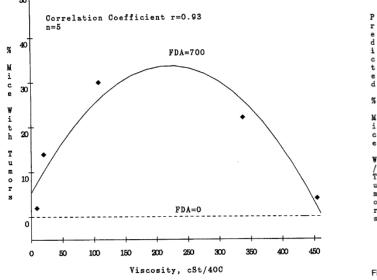

acknowledgement

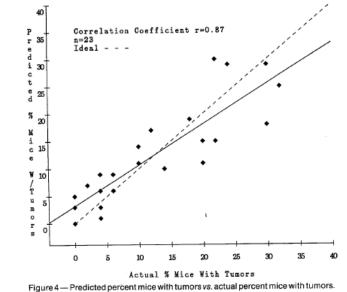
The measurement of Total Aromatics (MOAH) is nothing new

- DAB 8 UV-method did the same Best correlation with Oils
- Oils have shorter MOAH`s
- Longer MOAH chains are not toxicologically relevant
- Replaced by UV-methods including DMSO extraction to focus on PAH
- not biased by MW

Data source: H&R


Reproduction permitted with due acknowledgement


DAB 8 UV = Deutsche Arzneibuch 8, ultra violet method



Factors that influence analytical methods

- Molecular structure (high vs low, or, no alkylation)
- Viscosity of the oil (linked to BP range)

- Viscosity is an important property of an oil for hazard assessment
- MOAH HLPC measurements are heavily biased by High MW (overprediction)
- MW corrections should be considered
- Absorbance of < 200 (at 280 nm), linked to MI < 1 and T% of 4% is indicative of negligible hazard.

Haas et al., 1987. Am Ind. Hyg. Assoc. 48(11)

The "good MOAH"

nesearch article

Coal tar induces AHR-dependent skin barrier repair in atopic dermatitis

Ellen H. van den Bogaard,^{1,2} Judith G.M. Bergboer,¹ Mieke Vonk-Bergers,¹ Ivonne M.J.J. van Vlijmen-Willems,¹ Stanleyson V. Hato,³ Pieter G. Jens Michael Schröder,⁴ Irma Joosten,² Patrick L.J.M. Zeeuwen,¹ ar

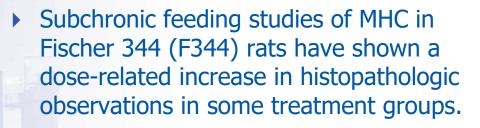
¹Department of Dermatology, Nijmegen Centre for Molecular Life Sciences, ²Laboratory of Medical Immunology, Inflammation and Immunity, and ³Department of Tumor Immunology, Nijmegen Centre for Molec Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands. ⁴Department of University Hospital of Schleswig-Holstein, Kiel, Germany.

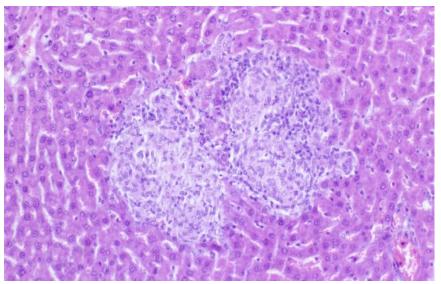
Petrolatum: Barrier repair and antimicrobial responses underlying this "inert" moisturizer

Tali Czarnowicki, MD,^a* Dana Malajian, BA,^{a,b}* Saakshi Khattri, MD,^{a,c}* Joel Correa da Rosa, PhD,^{a,d} Riana Dutt, ScB,^{a,c} Robert Finney, MD,^e Nikhil Dhingra, MD,^c Peng Xiangyu, MSc,^{a,c} Hui Xu, MSc,^{a,c} Yeriel D. Estrada, BS,^c Xiuzhong Zheng, MSc,^a Patricia Gilleaudeau, NP,^a Mary Sullivan-Whalen, NP,^a Mayte Suaréz-Fariñas, PhD,^{a,c,g,h,i} Avner Shemer, MD,^f James G. Krueger, MD, PhD,^a and Emma Guttman-Yassky, MD, PhD^{a,c} *New York, NY, Philadelphia, Pa, and Tel Aviv, Israel*

There is some evidence that a certain type of MOAH is good for you...

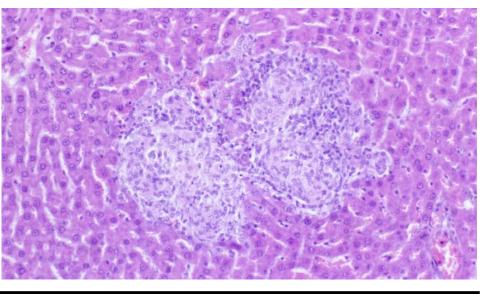
MOAH is thus highly contextual.

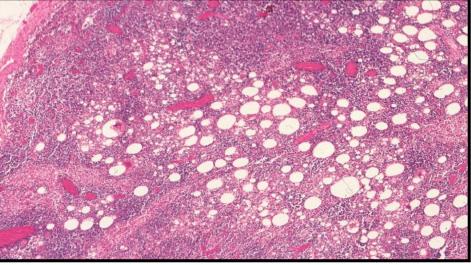

- The term "MOAH" does not describe the quality of the substance, because there are two types:
 - Bad MOAH: 3-7 ring PAC (eliminated through refinement)
- Harmless /good MOAH: highly alkylated aromatics (what is left after 3-7 PAC elimination)
- Refinement, toxicologists and compliance tests (IP346, Pharmacopeia) focus on Bad MOAH: 3-7 ring PAC
- Refined mineral oil products have an impeccable history of safety: even if "MOAH" is present


Interpretation of MOSH within Toxicology studies

- Observations include granulomas and microgranulomas in the liver
- Appear to result from an inflammatory response

These observations in F344 rats have not been observed in other rat strains


The granuloma in F344 rats are not observed in humans


- ► F344 \rightarrow epithelioid granuloma
- ► Human → lipogranuloma

F344 hepatic granuloma are morphologically distinct from those observed in humans.

F-344 High Dose Liver Epithelioid Granuloma

Human Autopsy Lipogranuloma

2012 EFSA Conclusions and Recommendations

		formation of Microgranul associated w available stu	of micro omas in vith an in idies did	carbon number hig ogranulomas in th MLN are considered flammatory response not show an effect of inflammatory reaction	e liver and me d of low toxicolog e or necrosis, do r on immune function	esenteric lymp gical concern be not progress to a	h nodes (MLN). ecause they are not adverse lesions and	
Most								
"potent"	Table 17:	NOAEL observed in female Fi	scher 344 ra	ats exposed to waxes, base	d on MLN histiocytosis	s and liver microgram	nulomas.	
MOSH – extrapolated	Test item ¹	Physico-chemical properties	Duration	Concentration in diet	Dose	NOAEL (m	g/kg b.w. per day)	Reference
to oils	i est nem	Thysico-chemical properties	Duration	(mg/kg)	(mg/kg b.w per day)	MLN histiocytosis	Liver microgranulomas	Reference
				Wa	xes			
X	LMPW	Viscosity at 40 °C (mm ² /s): solid Viscosity at 100 °C (mm ² /s): 3.3 Average MW: 375 C number range: 19-42	90 days	20, 200, 2 000, 20 000	2, 19, 190, 1 951	< 2	19	Smith et al, 1996
	IMPW	Viscosity at 40 °C (mm ² /s): solid Viscosity at 100 °C (mm ² /s): 6.3 Average MW: 450 C number range: 21-49	90 days	200, 2 000, 20 000	19, 190, 1 951	< 19	19	Smith et al, 1996
	HMPW	Viscosity at 40 °C (mm ² /s): solid Viscosity at 100 °C (mm ² /s): 15.4 Average MW: 630 C number range: 22-80	90 days	20, 200, 2 000, 20 000	2, 19, 190, 1 951	1 951	1 951	Smith et al, 1996
	¹ LMPW: Low melting point wax; IMPW: Intermediate melting point wax; HMPW: high melting point wax.							

'LMPW: Low melting point wax; IMPW: Intermediate melting point wax; HMPW: high melting point wax.

Reproduction permitted with due acknowledgement

P

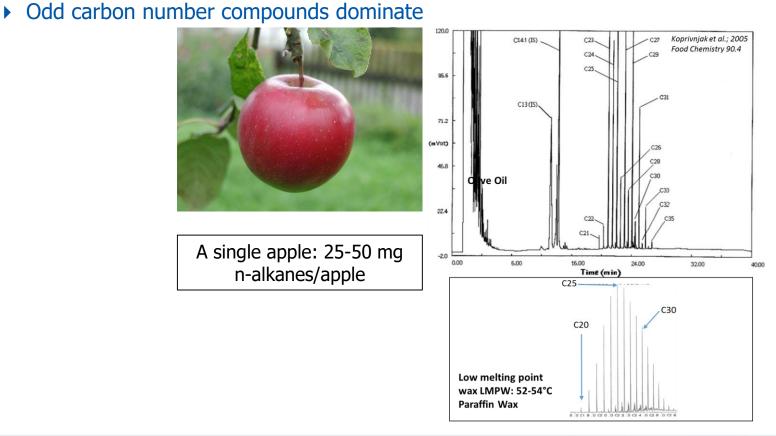
-

Natural n-Alkanes

Composition: n-Alkanes, wax esters, fatty acids, ketones,

Typically carbon chain length 29 to 31 can be up to 50%

"Cuticular wax" coats external surfaces of most fruits and

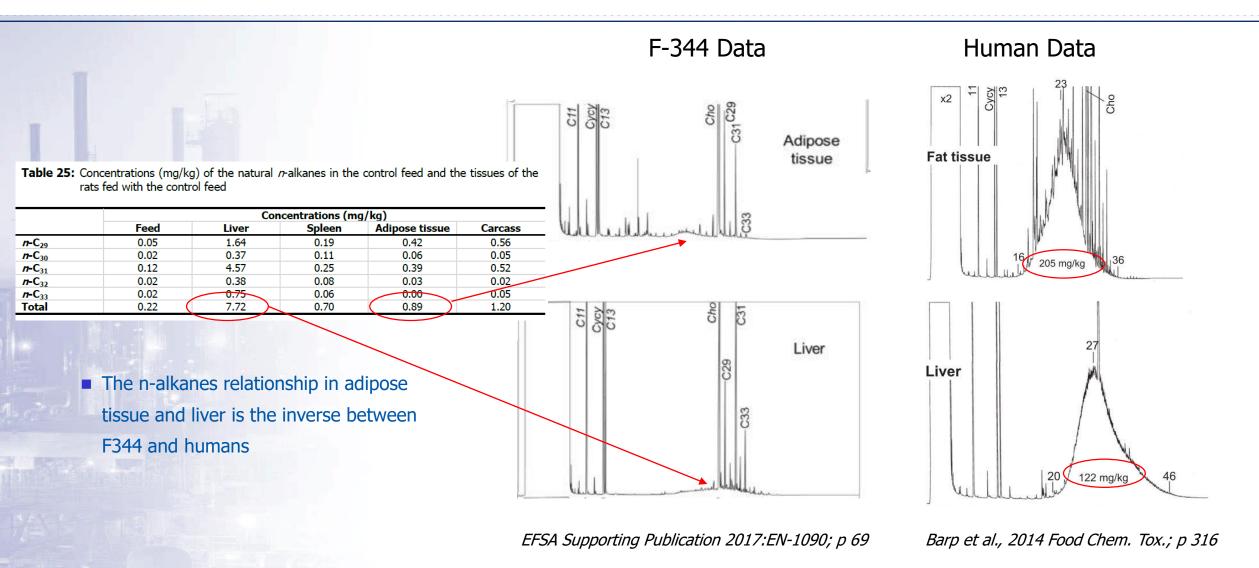

Number of samples	Edible oil	n-alkane (Σ_{15}^{33}) content ^a (mg kg ⁻¹ oil)	
6	Olive and extra virgin olive	28-99	
5	Sunflower	105-166	
4	Sesame	22-82	
5 4 3 3 3	Vegetable	62-96	
3	Corn	26-33	
3	Walnut	7-30	
3	Peanut/groundnut	27-40	
1	Hazelnut	14	
1	Sweet almond	44	
1	Pistachio	21	
1	Mustard seed	74	
1	Safflower	61	
1	Grapeseed	52	
1	Olive and sunflower	100	
1	Soya	17	
1	Cod liver oil	16	
1	Encapsulated cod liver oil	22	
1	Encapsulated halibut liver oil	33	
3	Specialist		
	barbecue	106	
	for fish	49	
	baking spray	11	

n-Alkane content in edible oils

(McGill et al J. Sci Food Agri. 1993 61 357-362)

Reproduction permitted with due acknowledgement

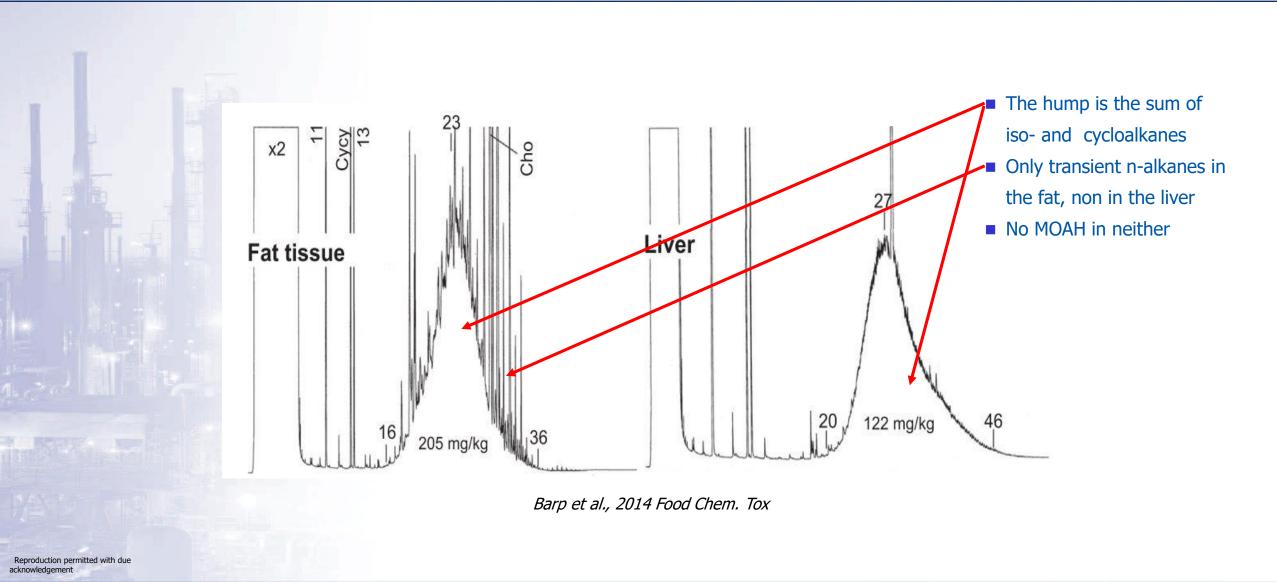
n-alkanes/apple



vegetables

fatty alcohols

Accumulation of Natural n-Alkanes


Reproduction permitted with due acknowledgement

In humans MOSH levels in the fat proves that there is exposure

P

(III)

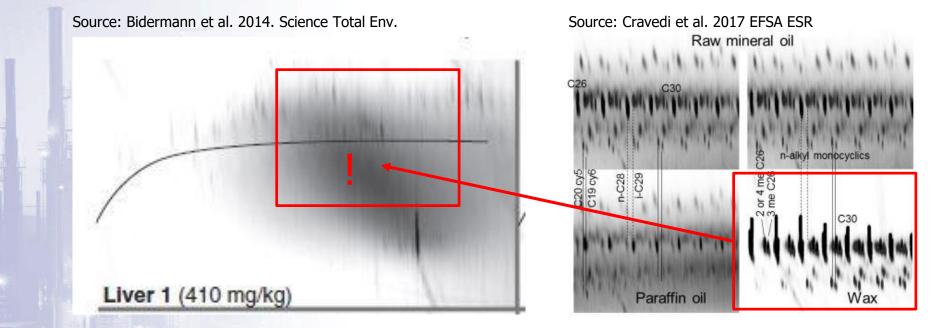
MOSH MOAH in FCM

Analyses of Mass Spectrometric Data on Saturated Hydrocarbons from Two Cases Compared to Similar Analyses of Mineral Oils

Caturated	Composition (percent)			
Saturated Hydrocarbon Types	#34135 (liver)	#34226 (spleen)	Mineral Oils*	
Alkanes (normal & branched)	27.9	39.3	12.7 - 48.1	
Cycloalkanes Non-condensed	25.7	18.8	21.3 - 26.0	
Condensed				
2 rings	25.3	16.2	14.1 - 21.1	
3 rings	11.4	11.5	7.4 - 18.3	
4 rings	7.1	11.3	5.0 - 15.0	
5 rings	2.6	2.9	2.0 - 8.4	
6 rings	0.0	0.0	0.0 - 3.2	

Cruickshank; 1984. Human Path.

Correlation of Extent of Oil Droplets in Liver and Speen with Saturated Hydrocarbon Content as Estimated by Thin-Layer Chromatography*


-	Oil Droplets Liver		Saturated Hydrocarbons	Oil Droplets Spleen		
0	1+	2+	(mg/gm of tissue)	0	1+	2+
6	0	0	< 0.2	4	0	0
3	5	1	0.2 - 1,0	0	0	0
0	0	3	> 1.0	0	0	4

- Lipogranuloma although not adverse, it is associated with retention of mostly cycloalkanes
- No correlation between tissue hydrocarbon levels and proportion of n-alkanes
- indicative of transient presence of n-alkanes
- Lipogranuloma formation has a MOSH threshold
 - 0.2 mg/g tissue internal dose.

Saturated Hydrocarbon	Oil Droplets		Incidence o
Content** (mg/gm of Tissue)	Absent	Present	Oil Droplets
< 0.2	31	0	0%
0.2 to 1.0	27	27	50%
1.0 to 2.5	2	34	94%
> 2.5	0	35	100%

Lipogranuloma in humans - composition

- Humans are exposed to mineral oil and waxes, which have different compositions
- A requirement for lipogranuloma formation is the retention of the relevant hydrocarbons (e.g. cycloalkanes)
- In human livers containing saturated hydrocarbons no hydrocarbon wax constituents are observed
- The substances that are present "grey cloud" found in human livers are not present in waxes
- Waxes don't contribute to the perceived "MOSH" problem

Fischer Lessons

0555

3

*O

F

٩

acknowledgement

FCM Mineral Oil and Waxes Regulatory overview

White Oils for <u>Food Applications</u> Regulations and Specifications

Application Example		EU Regulation	US Regulation
Food Additive	Glazing agent, anti- foaming, carriers, preservative for eggs or dried fruits	EU 1333/2008/EC (Directive 95/2/EEC): White Oils not on positive list ¹	21 CFR 172.878
Processing Aid	Release agent/lubricant, dedusting agent in grain, pan oil, demoulding oil	No EU Directive Some specific local regulations ²	21 CFR 172.878 (not differentiated from food additives)
Food Contact Materials	Extender oil in plastics, elastomers, paper, glass, metal, wood, cork, textiles, adhesives, pigments	Framework (EC) 1935/2004 Plastics: EU 10/2011 Others: to be developed Some local regulations ³	Various FDA chapters Require mineral oils that meet 21CFR178.3620 (a),(b) or (c) purity
Lubricant for incidental food contact	Formulation of lubricants for food machinery	No EU regulation	21 CFR 178.3570 (requires 178.3620(b) oils) NSF H-1 registration

• Most existing purity requirements are based on PACs using UV-DMSO methods

(1) Microcrystalline waxes are listed as E 905

Reproduction permitted with due acknowledgement (2) Eg French Arrêté for "Auxiliaires technologiques" (Food Processing Aids) – 21 Oct 2006 – demoulding uses (biscuits)
(3) Germany: BfR recommendation XXV Purity requirements for mineral oil (155 BGA Mitteilung), microcristalline wax and paraffin

<u>General requirements</u> outlined in Art. 3 of EU framework Regulation (EC) N° 1935/2004 for materials and articles intended to come into contact with foodstuff.

Products

permitted for the use in plastics for food contact applications

White mineral oils	FCM 95	Viscosity not less than 8,5 mm ² /s at 100°C Carbon number amount <c25, %<br="" 5="" max="">Average molecular weight not less than 480</c25,>			
Microcrystalline wax	FCM 94	Viscosity not less than 11 mm ² /s at 100°C Carbon number amount <c25, 5%<br="" max.="">Average molecular weight not less than 500</c25,>			
Paraffin wax*	FCM 93	Viscosity not less than 2.5,mm²/s at 100°C Carbon number amount <c25, 40%<br="" max="">Average molecular weight not less than 350</c25,>			
* Restriction: 0.05 mg/kg food Not to be used for articles in contact with fatty foods					

- EFSA and JECFA have set ADIs to various oil categories (food additive use)
- EU Plastic regulation specifies oils and waxes that meet EFSA/JECFA categories
 - No direct regulatory link between EFSA/JECFA ADIs and the Plastic regulation

	JECFA/EFSA Categories Specifications and ADIs	ADI JECFA	ADI EFSA	Kinematic viscosity at 100°C (cSt)		Carbon number at 5% boiling point	EU 10/2011 Plastic Regulation
11	Microcrystalline wax	0-20 mg/kg	0-20 mg/kg	≥ 11	≥ 500	≥ 25	Х
	Paraffin wax	-	-	≥ 2.5	≥ 350	Max 40% C<25	Х
	Mineral oil (high viscosity)	0-20 mg/kg	0-12 mg/kg	> 11	≥ 500	≥ 28	Х
	Mineral oil (medium and low viscosity) Class I	0-10 mg/kg	0-12 mg/kg	8.5-11	480-500	≥ 25	x
	Class II	- (removed)	- (removed)	7.0 – 8.5	400-480	≥ 22	
	Class III	- (removed)	- (removed)	3.0 – 7.0	300-400	≥ 17	

ADI : Admissible Daily Intake

- Some local regulations have set same oil requirements as EU Plastics Regulation, even if for different materials than plastics
 - e.g. German Draft Ordinance on Printing Inks, Elastomerleitlinie (Leitlinie zur hygienischen Beurteilung von Elastomeren im Kontakt mit Trinkwasser), Swiss Ordinance 817.023.21 April 2010 for food contact

Hydrocarbon Waxes in the (Food Contact) Plastics Regulation EU 10/2011 : specifications and purity

Br

EU 10/2011	FCM 93			FCM 94		
Description	Waxes, paraffinic, refined,	derived from petroleum base feedstocks, <u>low viscosity</u>	Waxes, refined, derived from petroleum based or synthetic hydrocarbon feedstocks, high viscosity			
Specification	Average Mol weight > 350 Dalton. Viscosity 100 °C > 2,5 cSt. Hydrocarbons with Carbon number less than 25, < 40 %.			Average Mol weight > 500 Dalton Viscosity 100 °C > 11 cSt Hydrocarbons with Carbon numb less than 25,<5 %		
Typical Products covered	Mineral parattin wax and synthetic (low viscosity) parattin wax (both tooddrade)			Mineral microcrystalline wax and synthetic (high viscosity) paraffin wax (both foodgrade)		
Source	Vacuum distillate mineral oil		FT process	Residu vacuum distillate mineral oil	FT process	
Abbreviation	breviation LMPW IMPW		LMSP	Micro	HMSP	
Carbon distribution	C20 - C35	C25 - C45	C20 - C50	C35 ⁽³⁾ - C80	C30 - C90	
N-alkane content (%)	85-90	50 - 70	> 90	10 - 60	> 90	
Melting point (°C)	52 - 60	60-68	50 - 100	50 - 100	110	
Viscosity 100 °C (cSt)	3	7	3 - 8	11 - 30	8 (120 °C)	
Average Mol weight	350	475	360 - 550	600 - 700	600 - 700	
SML	0.05 mg/kg	0.05 mg/kg	0.05 mg/kg	None	None	
Purity requirments	Based on absence PAH	Based on absence PAH	Based on absence PAH	Based on absence PAH	Based on absence PAH	
MOAH by GC (%)	Virtually absent	Virtually absent	Virtually absent	0 - 7	Virtually absent	
MOAH by NMR (%)	Virtually absent	Virtually absent	Virtually absent	0 - 0,5	Virtually absent	

3

Fr *

FCM 93	FCM 94		
Waxes, paraffinic, refined, derived from petroleum based or synthetic hydrocarbon feedstocks, low viscosity	Waxes, refined, derived from petroleum based or synthetic hydrocarbon feedstocks, high viscosity		
Average molecular weight no less than 350 Dalton	Average molecular weight no less than 500 Dalton		
Visocity at 100°C not less than 2.5 cSt	Visocity at 100°C not less than 11 cSt		
Content of hydrocarbons with Carbon Number less that 25, not more than 40% (w/w)	Content of hydrocarbons with Carbon Number less that 25, not more than 5 % (w/w)		
SML: 0.05 mg/kg	None		
Not to be used for articles in contact with fatty foods for which similant D is laid down			

Current situation

- SML of 0.05 mg/kg creates problems:
 - Customers have identified some LMPW applications that result in higher SML values
 - Restrictions to use in contact fatty foods hurts general use in the plastics industry

Because Hydrocarbon waxes show no "MOSH-like" concerns

- EWF Action Plan
 - Prepare and submit dossier to obtain higher or no SML for Paraffin Wax
 - Relevant 90 days studies with Sprague-Dawley rats are available
 - No accumulation of n-alkanes in human livers
 - Dossier and supporting evidence is ready
 - Migration testing currently underway
 - Dossier submission plan for early Q2 2018

95

Table 16: NOAELs observed in female Fischer 344 rats exposed to white mineral oils, based on MLN histiocytosis and liver microgranulomas.

Test item identification: P indicates a paraffinic white oil, mainly containing branched alkanes, no or minor amounts of aromatics. N indicates a naphthenic white oil, mainly containing cyclo alkanes, no or minor amounts of aromatics. The following number indicates the approximate viscosity (expressed in mm²/s) at 40 °C. The letter between brackets indicates the refining method applied (A: acid treatment; H: hydrogenation treatment). OTWO: oleum treated white oil (acid treatment), containing alkanes and cyclo alkanes, minor amounts of aromatics. HTWO: hydrotreated white oil, containing alkanes and cyclo alkanes (cyclo-alkanes in higher proportions than OTWO), no or minor amounts of aromatics.

T • •	Physico-chemical properties	D	Concentration in diet	Dose	NOAEL (mg/kg)		
Test item		Duration	(mg/kg)	(mg/kg b.w. per day)	MLN histiocytosis	Liver granulomas	Reference
N10(A)	Viscosity at 40 °C (mm ² /s): 13.3 Viscosity at 100 °C (mm ² /s): 3.1 Average MW: 320, C number range: 15-30	90 d	Oils have the	ir own	2	190	Smith et al, 1996
N15(H)	Viscosity at 40 °C (mm ² /s): 16.6 Viscosity at 100 °C (mm ² /s): 3.4 Average MW: 330 C number range: 17-30	/	data set and NOAEL (ev	_	<2	190	Smith et al, 1996
P15(H)	Viscosity at 40 °C (mm ² /s): 15. Viscosity at 100 °C (mm ² /s): 3.: Average MW: 350 C number range: 18-30		based on F3 No reason to	, L	2	190	Smith et al, 1996
	Viscosity at 40 °C (mm ² /s): 14.8	90	across from	Wax.		< 161	Firriolo et al 1995
OTWO	Viscosity at 40 °C (mm ² /s): 26	90 days	To	0, 440, 940,	0.93	46 ²	Baldwin et a 1992
N70(A)	Viscosity at 40 °C (mm ² /s): 76.4 Viscosity at 100 °C (mm ² /s): 7.9 Average MW: 410 C number range: 21-35	90 days	20, 200, 2 000, 20 000	2, 19, 190, 1 951	2	190	Smith et al, 1996
N70(H)	Viscosity at 40 °C (mm ² /s): 68.0 Viscosity at 100 °C (mm ² /s): 7.6 Average MW: 420 C number range: 22-37	90 days	20, 200, 2 000, 20 000	2, 19, 190, 1 951	2	190	Smith et al, 1996
HTWO	Viscosity at 40 °C (mm ² /s): 69	90 days	10, 100, 500, 5 000, 10 000, 20 000	$0.93, 9.0, 45, 450, 940, 1800^1$	45	45 ²	Baldwin, 1992

Reproduction permitted with due acknowledgement

EFSA Journal 2012;10(6):2704

MOSH MOAH in FCM Juan-Carlos Carrillo

- Oils should be evaluated on their own data set \rightarrow not as surrogate of wax
- It is the liver and not the MLN the basis for this evaluation
- Only the F344 (and not the SD or human) shows adverse granulomatous effects
- ▶ In the F344 rat the NOAEL is 190 mg/kg bw
- In the SD the NOAEL is at least 10x higher. > 2000 mg/kg bw
- An ADI can thus be justified at > 20 mg/kg

There is thus no reason to believe that low and medium viscosity oils can't be supported via a new ADI.

Acknowledgements

concawe

ENVIRONMENTAL SCIENCE FOR THE EUROPEAN REFINING INDUSTRY

Dirk Danneels – EWF **Jan Woldhuis** – Paramelt

Olaf Kral – Shell Klaus Suedkamp - Shell Hans Ketelslegers – CONCAWE David Adenuga – ExxonMobil Daniela Heber – H&R

STF 33- CONCAWE

Mineral oils are safe for human health?

Thank You

BfR December 7-8, 2017 Juan-Carlos Carrillo

BACK UP

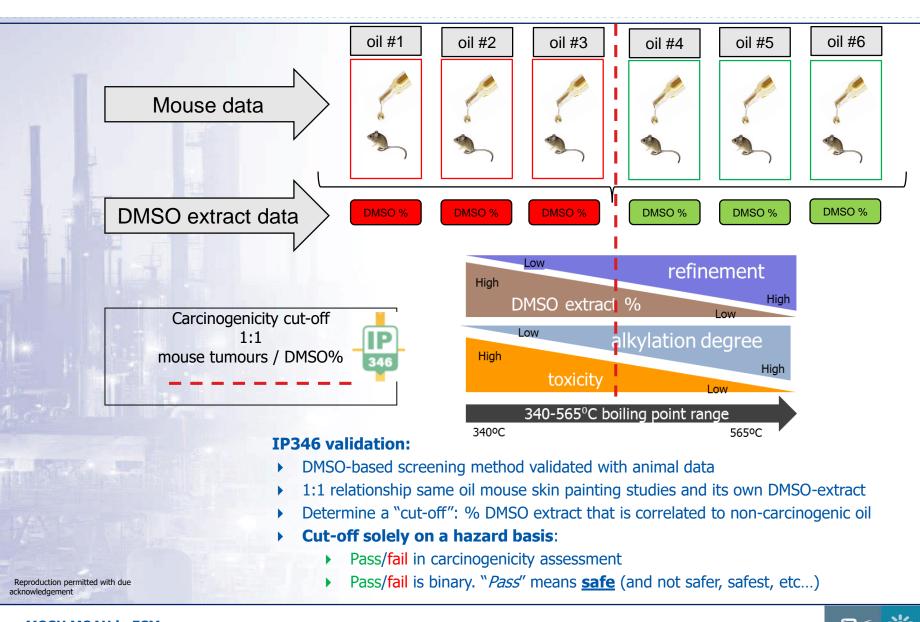

Reproduction permitted with due acknowledgement

Image: State of the state o

🖶 🔊 🖬

IP346: The Mouse Dermal Bioassay vs. DMSO% PAC Affinity

Carcinogenicity criteria for validation:

- No discrimination between benign or malignant tumours
- Potency (time of appearance of first skin tumour) is not considered
- Tumour incidence (4%) and not tumour formation stages used for IP346 validation

- **133 data** pairs support the IP346
- Completely eliminated carcinogenicity testing on animals
- Adopted in the 90's in the EU and in other countries (e.g. Australia, Malaysia) as regulatory standard for carcinogenicity assessment

It is the only validated analytical method with biological significance

		_
Reference	Data points (2 year studies)	
CONCAWE 6/16 CONCAWE 94/51	133 * 104	_
Chasey et al., 1993	94	
McKee et al., 1989	9	
Doak et al., 1983 and (1985)	12 (6)	
Blackburn et al., 1996	120	
Roy et al., 1988	39	

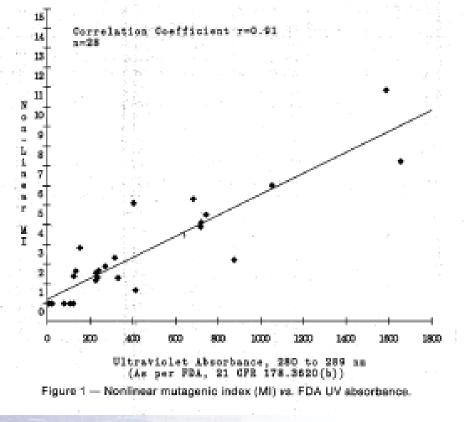
shall count !

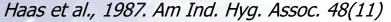
Negative predictivity = 95%

Accuracy = 89% (because of false positives)

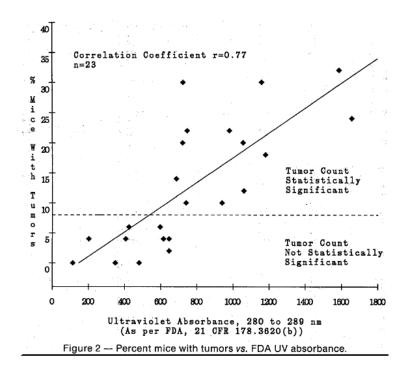
*Including all studies cited, without repetitions

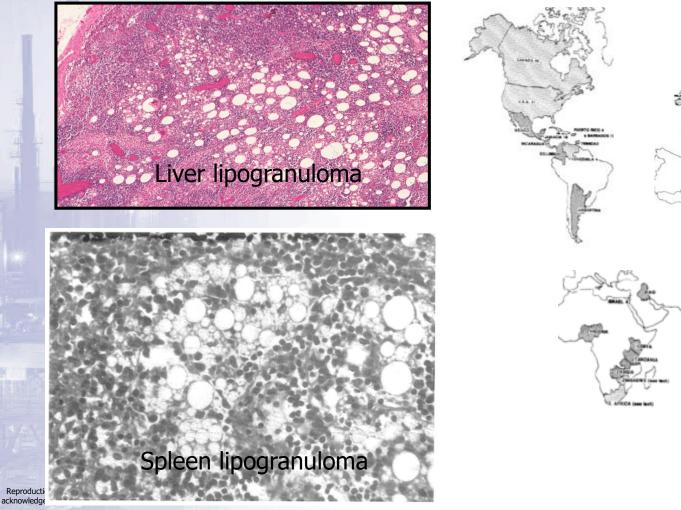
Reproduction permitted with due acknowledgement


IP 346 < 3% oil is not carcinogenic IP $346 \ge 3\%$ is carcinogenic


MONTY PYTHON

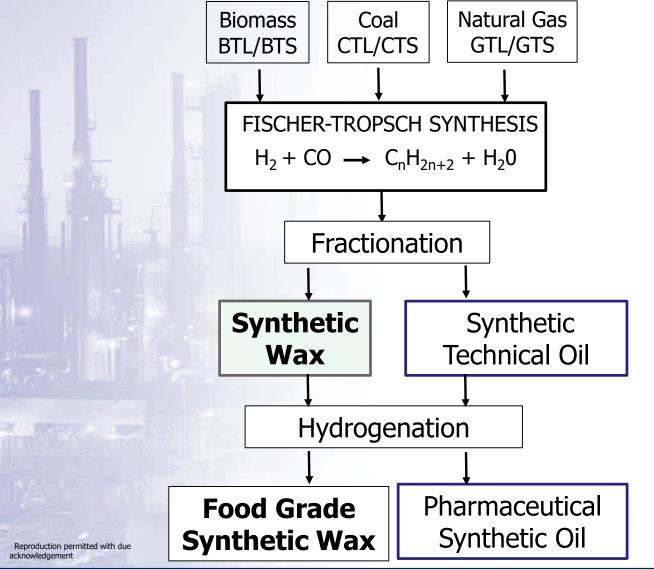
Three is the


number thou



- UV test with a DMSO extraction step (FDA 178.3620(b)
- MI index based on DMSO extracted PAC (ASTM E-1687/10)
- Absorbance at 280nm ~ 200 and MI < 1, indicates low risk of carcinogenicity (4% tumor incidence)

N HOOD


- Lipogranuloma has no pathological consequence (Fleming 2017, 1998)
- Lipogranuloma incidence in spleen (probably also liver) has geographical variation
 - <u>Incidence:</u> USA, UK, France, Australia, S. Africa, Venezuela
 - <u>Nil incidence:</u> Greece, Mexico, Argentina, East Africa, Japan, India

MOSH MOAH in FCM Juan-Carlos Carrillo

48

Synthetic Wax and Oil Manufacturing (Fischer Tropsch)

Process invented in 1925 by Franz Fischer and Hans Tropsch Uses several carbon sources Biomass to Liquids/Solids Coal to Liquids/Solids Gas to Liquid/Solid Manufactures a variety of products Diesel, Naphta, Jet Fuel, Base Oils, Waxes, etc Commercial product range includes oils of different viscosities and low and high melting waxes

(T)

		Food Contact	Legislation	Food Additive		Pharmacope a	Cosmetic	Pharmacopoeia and Cosmetic
	Product	Regulation	Purity test	Regulation	Purity test	Regulation		Purity Criteria
		FDA.178.3710	FDA 172.886		Wax (PCA -UV nograph (bcorption)			
		EC-1935/2004	Framework regulation	US Petroleum				
How H		EC-42/2007 (Regenerated Cellulose film)	< 2 mg/dm2					
		Bfr - Recomendations for Paraffin: XXI, XXXV, XXXVI, XLIV, XLVIII, LII.	Bfr - Recomendation XXV					
14	Hard Paraffin	EU 10/2011 (PLASTIC), German	95858 LVP			Eur /Ph- 9.0 USP -40	EC/1223-2009 and Cosmetic Europe recommendation	PAH Level (< 1/3 of absorbance of a solution containing 7 ppm naphtalene in DMSO at 278 nm)
	Microcrystalline	Elastomer Guidance, Swiss Ordinance 817.023.21	95859 HVP	JECFA (CODEX: INS- 905); EU 95/2 (E-905)	EC-231/2012	Eur /Ph- 9.0 USP -40 (*)	EC/1223-2009 and Cosmetic Europe recommendation	PAH (FDA 172.886)
and and and		Bfr - Recomendations: XXI, XXV,XXXV, XXXVI, XLIV, XLVIII, LII					Colipa Recommendation n ^o 14	PAH Level (EC-1223/209) and (KV \geq 11, MW \geq 500, Carbon number at 5% boiling point \geq 25)

Reproduction permitted with due acknowledgement

(*)- Microcrystalline Monograph in progress for European Regulation

Br

Hydrocarbon Waxes as Addi	Waxes as FCM Group (EC 1935/2004) Framework Regulation	
Harmonized FCM	Non-Harmonized FCM (Member State Legislation)	Non-Harmonized FCM (Member State Legislation)
	Adhesives	
	Coatings and Varnishes	Germany: Recommendation XXV
Plastics Regulation 10/2011	Printing Inks	
Thistics Regulation 10/2011	Rubber	
	Paper and Board	Holland: Warenwet Chapter X
	Textiles	

The **principle of mutual recognition** allows for the legal importation and sale into one Member State of products that are legally marketed in another Member State, even if the products do not comply with the specific regulatory requirements of the country of import.